Impact of Blueberry Consumption on the Human Fecal Bileacidome: A Pilot Study of Bile Acid Modulation by Freeze-Dried Blueberry.

Nutrients. 2022;14(18)
Full text from:

Other resources

Plain language summary

Primary bile acids (BAs) are made in the liver from cholesterol. They are released into the small intestine, where they aid fat digestion and absorption. Most BAs are reabsorbed from the gut, yet a small amount gets modified by the gut bacteria, forming secondary BAs destined for faecal excretion. Excess secondary BAs have negative health consequences. The different types of primary BAs influence many physiological functions. Such as glucose regulation, fat metabolism and absorption, intestinal inflammation and immunity, as well as gut bacteria diversity. For optimal BA metabolism, they are tightly regulated by the body, as minimal changes in BA pool and composition can have a significant impact on overall health. The composition of the BA pool can be influenced by gut bacteria, metabolic disorders, pathologies of the liver and gut, and diet. Dietary polyphenols, a plant-based compound, have been of particular interest here. This study sought to investigate the impact of supplementary freeze-dried blueberry powder (BBP), a rich polyphenol source, on the faecal BA pool composition in people at risk of metabolic syndrome. For this 11 men and 13 women were supplemented for 8 weeks. When compared to the data before the intervention, no significant changes in total BAs were observed. However, the composition of the BA pool changed leading to the accumulation of particular BAs and a reduction in secondary BA levels. This suggested that the consumption of blueberries can be considered a potential clinical intervention to aid the elimination of toxic secondary BAs. As the mechanisms leading to such modifications and their consequences for human health are complex, the authors advocate for investigation in larger population groups and also alert that such changes may be subject to interindividual variability and health status.

Abstract

Cholesterol-derived bile acids (BAs) affect numerous physiological functions such as glucose homeostasis, lipid metabolism and absorption, intestinal inflammation and immunity, as well as intestinal microbiota diversity. Diet influences the composition of the BA pool. In the present study, we analyzed the impact of a dietary supplementation with a freeze-dried blueberry powder (BBP) on the fecal BA pool composition. The diet of 11 men and 13 women at risk of metabolic syndrome was supplemented with 50 g/day of BBP for 8 weeks, and feces were harvested before (pre) and after (post) BBP consumption. BAs were profiled using liquid chromatography coupled with tandem mass spectrometry. No significant changes in total BAs were detected when comparing pre- vs. post-BBP consumption samples. However, post-BBP consumption samples exhibited significant accumulations of glycine-conjugated BAs (p = 0.04), glycochenodeoxycholic (p = 0.01), and glycoursodeoxycholic (p = 0.01) acids, as well as a significant reduction (p = 0.03) in the secondary BA levels compared with pre-BBP feces. In conclusion, the fecal bileacidome is significantly altered after the consumption of BBP for 8 weeks. While additional studies are needed to fully understand the underlying mechanisms and physiological implications of these changes, our data suggest that the consumption of blueberries can modulate toxic BA elimination.

Lifestyle medicine

Patient Centred Factors : Mediators/Freeze-dried blueberry powder
Environmental Inputs : Diet
Personal Lifestyle Factors : Nutrition
Functional Laboratory Testing : Stool
Bioactive Substances : Freeze-dried blueberry powder

Methodological quality

Jadad score : Not applicable
Allocation concealment : Not applicable
Publication Type : Journal Article

Metadata